131 research outputs found

    The Interaction Gap: A Step Toward Understanding Trust in Autonomous Vehicles Between Encounters

    Full text link
    Shared autonomous vehicles (SAVs) will be introduced in greater numbers over the coming decade. Due to rapid advances in shared mobility and the slower development of fully autonomous vehicles (AVs), SAVs will likely be deployed before privately-owned AVs. Moreover, existing shared mobility services are transitioning their vehicle fleets toward those with increasingly higher levels of driving automation. Consequently, people who use shared vehicles on an "as needed" basis will have infrequent interactions with automated driving, thereby experiencing interaction gaps. Using human trust data of 25 participants, we show that interaction gaps can affect human trust in automated driving. Participants engaged in a simulator study consisting of two interactions separated by a one-week interaction gap. A moderate, inverse correlation was found between the change in trust during the initial interaction and the interaction gap, suggesting people "forget" some of their gained trust or distrust in automation during an interaction gap.Comment: 5 pages, 3 figure

    Exactly Marginal Operators and Duality in Four Dimensional N=1 Supersymmetric Gauge Theory

    Get PDF
    We show that manifolds of fixed points, which are generated by exactly marginal operators, are common in N=1 supersymmetric gauge theory. We present a unified and simple prescription for identifying these operators, using tools similar to those employed in two-dimensional N=2 supersymmetry. In particular we rely on the work of Shifman and Vainshtein relating the \bt-function of the gauge coupling to the anomalous dimensions of the matter fields. Finite N=1 models, which have marginal operators at zero coupling, are easily identified using our approach. The method can also be employed to find manifolds of fixed points which do not include the free theory; these are seen in certain models with product gauge groups and in many non-renormalizable effective theories. For a number of our models, S-duality may have interesting implications. Using the fact that relevant perturbations often cause one manifold of fixed points to flow to another, we propose a specific mechanism through which the N=1 duality discovered by Seiberg could be associated with the duality of finite N=2 models.Comment: 35 pages, 7 Postscript figures, uses revtex.sty (revised version corrects some important details, tex problems

    Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Full text link
    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5 figures, 8 tables

    International Recommendations for Training Future Toxicologic Pathologists Participating in Regulatory-Type, Nonclinical Toxicity Studies*

    Get PDF
    The International Federation of Societies of Toxicologic Pathologists (IFSTP) proposes a common global framework for training future toxicologic pathologists who will support regulatory-type nonclinical toxicology studies. Trainees optimally should undertake a scientific curriculum of at least 5 years at an accredited institution leading to a clinical degree (veterinary medicine or medicine). Trainees should then obtain 4 or more years of intensive pathology practice during a residency and/or on-the-job “apprenticeship,” at least 2 years of which must be focused on regulatory-type toxicologic pathology topics. Possession of a recognized pathology qualification (i.e., certification) is highly recommended. A non-clinical pathway (e.g., a graduate degree in medical biology or pathology) may be possible if medically trained pathologists are scarce, but this option is not optimal. Regular, lifelong continuing education (peer review of nonclinical studies, professional meetings, reading, short courses) will be necessary to maintain and enhance one’s understanding of current toxicologic pathology knowledge, skills, and tools. This framework should provide a rigorous yet flexible way to reliably train future toxicologic pathologists to generate, interpret, integrate, and communicate data in regulatory-type, nonclinical toxicology studies

    Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites

    Get PDF
    The p300 and CBP histone acetyltransferases are recruited to DNA double-strand break (DSB) sites where they induce histone acetylation, thereby influencing the chromatin structure and DNA repair process. Whether p300/CBP at DSB sites also acetylate non-histone proteins, and how their acetylation affects DSB repair, remain unknown. Here we show that p300/CBP acetylate RAD52, a human homologous recombination (HR) DNA repair protein, at DSB sites. Using in vitro acetylated RAD52, we identified 13 potential acetylation sites in RAD52 by a mass spectrometry analysis. An immunofluorescence microscopy analysis revealed that RAD52 acetylation at DSBs sites is counteracted by SIRT2- and SIRT3-mediated deacetylation, and that non-acetylated RAD52 initially accumulates at DSB sites, but dissociates prematurely from them. In the absence of RAD52 acetylation, RAD51, which plays a central role in HR, also dissociates prematurely from DSB sites, and hence HR is impaired. Furthermore, inhibition of ataxia telangiectasia mutated (ATM) protein by siRNA or inhibitor treatment demonstrated that the acetylation of RAD52 at DSB sites is dependent on the ATM protein kinase activity, through the formation of RAD52, p300/CBP, SIRT2, and SIRT3 foci at DSB sites. Our findings clarify the importance of RAD52 acetylation in HR and its underlying mechanism

    The Impact of Metallicity on the Rate of Type Ia Supernovae

    Get PDF
    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below ~8 M_sun leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae. However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by LOSS is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z~2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.Comment: 8 pages, 3 figures; updated discussion and added references to agree with published version; conclusions unchange

    Auxiliary gauge mediation: a new route to mini-split supersymmetry

    Get PDF
    The discovery of a standard-model-like Higgs at 126 GeV and the absence of squark signals thus far at the LHC both point towards a mini-split spectrum for supersymmetry. Within standard paradigms, it is non-trivial to realize a mini-split spectrum with heavier sfermions but lighter gauginos while simultaneously generating Higgs sector soft terms of the correct magnitude, suggesting the need for new models of supersymmetry breaking and mediation. In this paper, we present a new approach to mini-split model building based on gauge mediation by “auxiliary groups”, which are the anomaly-free continuous symmetries of the standard model in the limit of vanishing Yukawa couplings. In addition to the well-known flavor SU(3) [subscript F] and baryon-minus-lepton U(1) [subscript B−L] groups, we find that an additional U(1) [subscript H] acting on the Higgs doublets alone can be used to generate Higgs soft masses and B-terms necessary for a complete model of mini-split. Auxiliary gauge mediation is a special case of Higgsed gauge mediation, and we review the resulting two-loop scalar soft terms as well as three-loop gaugino masses. Along the way, we present a complete two-loop calculation of A-terms and B-terms in gauge mediation, which — contrary to a common misconception — includes a non-zero contribution at the messenger threshold which can be sizable in models with light gauginos. We present several phenomenologically acceptable mini-split spectra arising from auxiliary gauge mediation and highlight a complete minimal model which realizes the required spectrum and Higgs sector soft terms with a single U(1) [subscript X] auxiliary gauge symmetry. We discuss possible experimental consequences.United States. Dept. of Energy (Cooperative Research Agreement DE-FG02-05ER-41360)National Science Foundation (U.S.). Graduate Research Fellowship ProgramSimons Foundation (Postdoctoral Fellowship)United States. Dept. of Energy (Early Career Research Program DE-FG02-11ER-41741

    Auditory Spatial Acuity Approximates the Resolving Power of Space-Specific Neurons

    Get PDF
    The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination

    A Micro RNA Processing Defect in Rapidly Progressing Idiopathic Pulmonary Fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF. METHODOLOGY AND PRINCIPAL FINDINGS: miRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts. CONCLUSION: These findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing

    Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Milkweeds (<it>Asclepias </it>L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (<it>Asclepias syriaca </it>L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing <it>A. syriaca </it>as a model in ecology and evolution.</p> <p>Results</p> <p>A 0.5× genome of <it>A. syriaca </it>was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: <it>accD, clpP</it>, and <it>ycf1</it>. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/<it>copia</it>-like retroelements are the most common repeat type in the milkweed genome. At least one <it>A. syriaca </it>microread hit 88% of <it>Catharanthus roseus </it>(Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the <it>A. syriaca </it>genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed.</p> <p>Conclusions</p> <p>The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and <it>A. syriaca </it>in particular, as ecological and evolutionary models.</p
    corecore